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Abstract 

The compounds [M(-q-CsH4-CMe2tx-CsH4)X2]  (where M = Mo and X 2 = H2, C12, Me2, Phil; M = W and X 2 = H2, CI*, 
Me2, Me(PhCO2), MeH) and [Mo(r / -C5H4C(CH2)4- 'q-C5H4)X2]  (X = H, CI*) are described. For the complexes marked with an 
asterisk the crystal structures are reported. These ansa-bridgcd compounds exhibit substantially different reactivities from those 
of the unbridged analogues. 
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Recently there has been considerable interest in the 
chemistry of the so-called stereorigid, ansa-bridged 
bis-r/-cyclopentadienyl derivatives of the Group IV 
metals [1]; e.g. {ansa-MOT-C5Hn-ERz-~q-CsH4)]CI 2} 
(where M = Ti, Zr, Hf  and E = Si, C [2]), since these 
compounds are precursors for homogeneous catalyst 
systems for a-olefin polymerisation [3]. The structural 
changes associated with the presence of the single 
atom ansa-bridged compounds have been established; 
for example, a decrease in the bending angle 0. (The 
bending angle is defined as the angle between the lines 
from the metal centre normal to the planes of the 
-q-cyclopentadienyl rings.) 

Little is known of the electronic consequences of the 
introduction of such an ansa bridge. Smith and 
Brintzinger have studied the chemistry of the {M[(~/- 
CsH4-(CH2)2-r/-CsHa)]}[M = Ti, V] systems and sug- 
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gested that differences in reactivity between these and 
the non-bridged Ti(rI-CsH5) 2 system may reflect the 
inability of ansa-bridged system to achieve a parallel 
ring structure [4]. Thus, we decided to compare the 
well-known and very extensive chemistry of the bent 
bis-rl-cyclopentadienyl derivatives of molybdenum and 
tungsten [5] with that of analogues containing an ansa- 
CR 2 system; for example, the derivatives of the moiety 
M[(~7-CsH4)CMe2(rT-CsH4)], where M = Mo or W. 

Recently the use of the compound [WC14dme] (dme 
= 1,2-dimethoxyethane) for the synthesis of bis-rl- 
cyclopentadienyl-tungsten compounds has been de- 
scribed [6]. We have found that treatment of [MoC14 
dme] with [Li(CsH4)CMe2(CsH4)Li] in diethyl ether 
gives red-brown [Mo(rI-CsH4-CMe2-rI-CsH4)C12] (1) 
in 52% yield. The red-brown tungsten analogue [W(rl- 
CsH4-CMe2-rl-CsH4)C12] (2) was prepared similarly, 
in 64% yield, using [WC14dme]. Typically the new ansa 
compounds 1 and 2 were prepared on a 6-8  g scale. 

Treatment  of 1 and 2 with LiA1H 4 in diethyl ether 
gave the corresponding pale yellow crystalline dihy- 
drides [M(rI-CsH4-CMe2-rI-CsH4)H2], where M = Mo 
(3) and W (4) in ca. 30 and 40% yield respectively. The 
compounds 1-4  clearly will be synthons for an exten- 
sive development of the chemistry of the M(r/-CsH 4- 
CMe2-rI-C5H 4) moiety. We have made a preliminary 
study of their chemistry and find substantial differ- 
ences from that of the non-ansa analogues. 
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Thus, photolysis of a solution of 3 in benzene using 
a medium pressure mercury lamp for 100 h gave > 80% 
yield of the phenyl hydrido complex [Mo(r/-CsH 4- 
CMe2-r/-CsH4)PhH], 5. However, during prolonged 
photolysis of 4 in benzene for 100 h, monitoring by 
~H-NMR spectroscopy showed there was no reaction. 

Treatment  of a suspension of 1 and 2 in toluene 
with dimethylzinc gave the expected dimethyl deriva- 
tives [W('q-CsHn-CMe2-r/-CsH4)Me2] (6) and [Mo(~7- 
CsH4-CMe2-r/-CsHa)Me2] (7) in ca. 45 and 30% yield, 
respectively. The tungsten derivative was treated with 
benzoic acid to give [W(r/-CsHn-CMe2-r/-CsHa)Me 
(CO2Ph)] (8) and this was further treated with 
Na[A1H2(OCH2CH2OMe) 2] to give the methyl hy- 
drido compound [W(r/-CsH4-CMe2-r/-CsHa)MeH] (9). 
When a solution of 9 in benzene was heated for 10 h at 
80°C, I H-NMR spectroscopy showed that no reaction 
occurred. 

There are three striking differences between the 
reactions of the ansa-bridged compounds described 
above and those of the non-bridged bis-r/-cyclopenta- 
dienyl analogues. First, photolysis of [Mo(r/-CsHs)2H 2 ] 
in benzene gives only the dimer [Mo(r/-CsHs)(/z-~,rt- 
C5H4)] 2 [7]. The phenyl hydrido complex [Mo(r/- 
CsHs)2PhH] is not formed, and neither can this com- 
pound be made by alternative routes available to the 
tungsten analogue. Second, photolysis of [W(r/- 
CsHs)2H 2] in benzene readily gives the phenyl hy- 
drido complex [W(r/-CsHs)2PhH] [8], whilst under the 
same conditions 4 is completely unreactive. Third, in 
contrast to 9, the methyl hydrido complex [W(r/- 
CsHs)2MeH] is thermally unstable above ca. 40°C and 
decomposes with the evolution of methane and forma- 
tion of tungstenocene, a reactive intermediate [9] which 
can insert into carbon-hydrogen bonds [8]. For exam- 
pie, thermolysis of [W(r/-CsHs)2MeH] in benzene give 
the phenyl hydrido species [W(r/-CsHs)zPhH] [9]. 

The above observations show that the ansa-bridged 
compounds [M(r/-C~H4-CMee-'q-CsH4)XY] (where 
M = Mo, XY = H 2 (3); Phi l  (5); and M = W, XY = H 2 
(4); MeH (9)) have a much greater stability towards 
reductive elimination of XY, under  either thermal or 
photochemical conditions as appropriate, than the cor- 
responding non-bridged bis-r/-cyclopentadienyl ana- 
logues [M(r/-CsH5)eXY]. The new reactions and struc- 
tures proposed for compounds 1-9  are shown in 
Scheme 1 [10]. 

The compounds [Mo('q-CsH4-C(CH2)4-r/-C5H4) 
X2], X = C1 (10) and X = H (11) were prepared using 
[Li(CsH4)-C(CH2)4-(CsH4)Li] by a procedure analo- 
gous to that used for 1 and 3. 

The crystal structures of [W('q-CsH4-CMee-r/- 
C5H4)C12] (2) and [Mo(r/-C5H4-C(CHz)4--q-CsH4)CI2] 
(10) have been determined [11] and distances and 
angles pertinent to the discussion below are given in 
Tables 1 and 2, together with related data for [W(r/- 
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Scheme 1. Reagents and conditions: (i) in diethyl ether at room 
temperature; (ii) LiAIH 4 in diethyl ether at -78°C, 30-40%; (iii) 
ZnMe 2 in toluene -78°C; (iv) hu, benzene; (v) PhCOzH in 
petroleum ether (b.p. 100-120°C) at reflux; (vi) Na[AIH2(OCH 2 
CH2OCH3)2] in benzene at room temperature. 

C5H4-CMea-r/-CsH4)H 2] (4), [Mo(r/-CsH4-CMe2-r/- 
CsH4)H 2] (3) and for the non-bridged analogues. The 
structures of 2 and 10 are shown in Fig. 1. The data in 
Tables 1 and 2 show that, as expected, the bending 
angle 0 is substantially smaller in the ansa-bridged 
compounds than in the non-bridged analogues and, 
therefore, the structures of intermediate 16-electron 
fragments M(r/-CsH4-CMez-r/-C5H4) would be sub- 
stantially changed from a parallel ring structure found 

Table 1 
Selected distances (A) and angles (o). M = W in 2; M = Mo in 10 

Compound 2 10 

M-X 2.452(2) 
M-Cp(cent) 1.948 
M-Cp(1) 1.939 
M-C 2.224-2.452(7) 

av. 
C-C 1.38(1)-1.462(8) 

av. 
C(Cp)-C(bridge) 1.526(7) 
X-M-C(~) 81.85(8) 
X-M-Cp(cent) 110.7 109.4 

Cp(cent)-M-Cp(cent) 126.0 
Bending angle (0) 115.2 
Cp-Cbr-Cp 93.8(6) 
Conformation eclipsed 

2.4621(4); 2.4694(4) 
1.957; 1.958 
1.949:1.950 
2.226-2.382(2) 

av. 
1.390-1.446(3) 

av. 
1.508(2); 1.516(2) 

82.66(2) 
110.6 109.5 
109.6 111.1 
125.3 
114.6 
93.6(1) 

eclipsed 
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Table 2 
Selected distances (,~) and angles (°) 

Compound 1 X-M-X(tb)  Bending Ref. 
angle (0) 

[MoCP2C12] 82.0(2) 82.0(2) 130.9 130.2 [19] 
[MoCp 2 H 2 ] 75.5(3) 145.8 [20] 
[Mo{C(CaHsXCsH4)2}C12] 82.66(2) 114.6 [21] 
[Mo{C(CH3)2(CsHa)2}H 2] 80.3(2.8) 121 [22] 
[W{C(CH 3)2(C5H4)2}C12 ] 81.85(8) 115.2 [21] 
[W{C(CH 3)2(C5H 4)2}H 2 ] 95.5(4.0) 120.3 [22] 

1 Cp = * / -CsH s. 

for the unbridged [M(r/-CsHs)2], where M = Cr, W 
[12]. In contrast the CI-M-C1 angles (~b) for 1, 2 and 
10 and the non-bridged [Mo('r/-C5Hs)2C12] are closely 
similar. Also, in both 2 and 10, the bond angle at the 
C(6) atom of ca. 94 -97  ° is significantly below the 
tetrahedral value of 109.5 °. The photoelectron spec- 
trum of [W('q-CsH4-CMe2-r/-CsH4)H2] shows that the 
ionisation energy associated with the d 2 electron is 6.47 
eV, and is closely similar to that for the non-bridged 
analogue [12]. It appears that the changes in electron 
energies associated with changes of 0 [13] are not 
reflected in the X - M - X  grouping. In conclusion, the 

C(3) 

c ( 4 ~  c(2) 
c(7') c(5) r-~ E II ~ L  

C(7) C(5') ~ C(2') 

C(4') 

(a) c(3') 

C(3) 

c ( 4 ) ~  c(2/ 

c,o c ( 5)(/~L- ~ , ~ ' [  f 

C9 

C ( 1 2 ) k ~  c(14) 

(b) C(15) 

Fig. 1. Molecular structure of (a) 2 and (b) 10. 

ansa-bridged compounds 3 - 5  and 9 are much more 
stable towards reductive elimination reactions than are 
the related non-bridged compounds. It seems probable 
that, as suggested by Smith et al. for ansa-bis-~7-cyclo- 
pentadienyltitanium compounds [1], the increased sta- 
bility reflects the inability of the 16-electron moiety 
M(r/-CsH4-CMe2-r/-CsH 4) to adopt a parallel ring 
sandwich structure. 
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(M + }. 
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MS: 386 (M + ). 

7 [Mo{C(CH3)2(CsH4)_~}(CH3)2]: ~H, C 6 D 6 : 4 . 4 8  (4H, m, 
CsH4), 4.11 (4H m, CsH4), 0.51 (6H, s, C(CH3) 2, 0.13 (6H, s, 
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8 [W{C(CH3)2(CsHa)2}(CH3XO2CPI1)]: IH, C6D6:8.48 (2H, 
d, CsHs) ,  7.20 (3H, m, CsHs) ,  5.32 (2H, m, C5H4), 5.15 (2H, m, 
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C(CH3) 2, 0.46 (3H, s, C(CH3)2, -0 .01 (3H, s, CH3). 13C, C6D 6, 
ppm: 173.5 (s; CO2Ph); 135.6 (s; CsHs);  130.7 (s; CsHs);  130.4 
(s; C6Hs); 130.2 (s; CsHs) ;  114.1 (s; C5H4), 106.7 (s; C5H4), 
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9 [W{C(CH3)2(CsHa)2}(CH3)H]: IH, CsDs: 5.13 (2H, m, 
C5H4), 4.41 (4H, m, C5H4), 3.79 (2H, m, C5H4), 0.57 (3H, s, 
C(CH3)2, 0.28 (3H, s, C(CH3) 2, 0.12 (3H, s, CH3), -6 .30  (1H, 
s, J (WH) = 62). 13C, C~,D6:104.5 (s; C5H4) , 86.6 (s; C5H4) , 70.5 
(s; C5H4), 63.3 (s: CsH4), 47.7 (s; C5H4), Cipso), 31.9 (s; 
C(CH3)2), 22.4 (s; C(CH3)2), 22.3 (s; C(CH3) 2, -37 .1  (s; CH3). 
MS: 370 (M+).  

10 [Mo{C(C4Hs)(CsH4)2}CI2]: IH, CD2C12:6.24 (4H, m, 
C5H4) , 4.95 (4H, m, C5H4), 1.69 (4H, m, CH2), 1.37 (4H, m, 
CH2). 

11 [Mo{C(C4Hs)(CsH4)2}H 2]: IH, C6D6:4.98 (4H, m, C5H4), 
4.08 (4H, m, C5H4) , 1.42 (4H, m, CH2), 1.07 (4H, m, CH2), 
-4 .74  (2H, s). ~3C, C6D6, 88.7 (s; C5H4), 71.8 (s; C5H4) , 50.6 
(s; C5H4), Cipso), 45.7 (s; C{C4Hs}), 33.4 (s; CH2), 23.1 (s; 
CH~). 
Crystal data for 2. C13H14C12 w ,  M =  425.01, monoclinic, a = 
12.2010(9), b = 10.7608(5), c = 9.877048) A, /3 = 110.62(I), V =  
1213.742) ,~3 space group C 2 / c ,  Z =  4, D c = 2.33 g cm 3, 
F(000)= 800, /z = 101.37 cm i. Crystal dimensions ca. 0.03x 
0.19×0.43 mm 3. 2923 measured reflections (1.0 < 0 < 34 °, - h ,  
h. - I, k,  - 1, l), 2473 unique (merging R = 0.055), 2043 with 
the 1 > 4~r(1) in refinement (74 variables, observ./variab. = 27.6, 
weighting coefficients 15.0, -9 .7 ,  10.5), maximum and minimum 
peaks in the final difference map 1.07 and -1 .23  e,~ -3, R = 
0.053, R w = 0.060. 

Crystal data for 10. CxsHlsCI2Mo, M = 363.14, triclinic, a = 
8.1632(8), b=8.3435(4), c =  10.4484(4) ,~, a =  70.5841), /3= 
75.99(1), y = 84.65(1), U =  651.1(1),~3 space group P1, Z =  2, 

I121 

[13] 

[141 

[15] 

[16] 

[17] 

[18] 

[19] 

[2o] 

[21] 
[22] 

D c = 1.85 g cm -3, F(000)= 364, tz = 13.76 cm. Crystal dimen- 
sions ca. 0.06 × 0.16 × 0.34 mm 3. 3297 measured reflections (1.0 
< 0 < 27 ° , - h, h, - k, k, - l ,  l), 2820 unique (merging R =  
0.012), 2531 with the I >  3or(I) in refinement (163 variables, 
observ./variab. = 15.5, weighting coefficients 5.6, -2 .5 ,  4.6), 
maximum and minimum peaks in the final difference map 0.40 
and -0 .36  e,~ -3, R = 0.019, R,, = 0.023. 

Data were collected at room temperature on an Enraf-Nonius 
CAD4 diffractometer (to-20 mode with the to scan width = 
0.77-0.79+0.34 tan 0, to scan speed 1.4-10.1 ° min -1, the ratio 
of the scanning rates t o / 0 ~ l . 2 ,  graphite-monochromated 
M o K a  radiation, A = 0.71069 A). 

For both structures corrections for Lorentz and polarization 
effects as well as empirical correction for absorption [14] based 
on azimuthal scan data were applied. The structures of 2 and 10 
were solved by direct methods and refined by full-matrix least- 
squares technique with all non-hydrogen atoms in anisotropic 
approximation. In 10 all hydrogen atoms were located in the 
difference Fourier maps, in 2 all H-atoms were placed geometri- 
cally. For both structures, hydrogen atoms were included in the 
refinement with the fixed positional and thermal parameters. 
Chebyshev weighting scheme was applied [15]. Anomalous dis- 
persion contributions were included in the calculated structure 
factors. An empirical absorption correction using the DIFABS [16] 
program was applied after isotropic convergence. Crystallo- 
graphic calculations were carried out using the CRYSTALS [17] 
program package on Micro VAX 3800 computer. Neutral atom 
scattering factors were taken from the usual sources [18]. Addi- 
tional material available from Cambridge Crystallographic Data 
Centre comprises atom coordinates, thermal parameters and 
remaining bond lengths and angles. 
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