Ansa-[(2,2-bis- η-cyclopentadienyl) propane]-molybdenum and -tungsten chemistry and related studies

Luca Labella ${ }^{\text {a }}$, Alexander Chernega ${ }^{\text {b }}$, Malcolm L.H. Green ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Inorganic Chemistry Laboratory, South Parks Road, Oxford OXI 3QR, UK
${ }^{\mathrm{b}}$ Chemical Crystallography Laboratory, 9 Parks Road, Oxford OXI 3PD, UK

Received 9 May 1994

Abstract

The compounds [$\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2} \mu-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{X}_{2}$] (where $\mathrm{M}=\mathrm{Mo}$ and $\mathrm{X}_{2}=\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{Me}_{2}, \mathrm{PhH} ; \mathrm{M}=\mathrm{W}$ and $\mathrm{X}_{2}=\mathrm{H}_{2}, \mathrm{Cl}_{2}^{*}$, $\left.\mathrm{Me}_{2}, \mathrm{Me}\left(\mathrm{PhCO}_{2}\right), \mathrm{MeH}\right)$ and $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{X}_{2}\right]\left(\mathrm{X}=\mathrm{H}, \mathrm{Cl}^{*}\right)$ are described. For the complexes marked with an asterisk the crystal structures are reported. These ansa-bridged compounds exhibit substantially different reactivities from those of the unbridged analogues.

Keywords: Molybdenum; Tungsten; Ansa-bridging; 2,2-bis- η-cyclopentadienyl(propane)

Recently there has been considerable interest in the chemistry of the so-called stereorigid, ansa-bridged bis- η-cyclopentadienyl derivatives of the Group IV metals [1]; e.g. \{ansa-M($\left.\left.\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{ER}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right] \mathrm{Cl}_{2}$ \} (where $\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}$ and $\mathrm{E}=\mathrm{Si}, \mathrm{C}[2]$), since these compounds are precursors for homogeneous catalyst systems for α-olefin polymerisation [3]. The structural changes associated with the presence of the single atom ansa-bridged compounds have been established; for example, a decrease in the bending angle θ. (The bending angle is defined as the angle between the lines from the metal centre normal to the planes of the η-cyclopentadienyl rings.)

Little is known of the electronic cunsequences of the introduction of such an ansa bridge. Smith and Brintzinger have studied the chemistry of the $\{\mathrm{M}[(\eta-$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}-\left(\mathrm{CH}_{2}\right)_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]\right\}[\mathrm{M}=\mathrm{Ti}, \mathrm{V}]$ systems and sug-

[^0]gested that differences in reactivity between these and the non-bridged $\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ system may reflect the inability of ansa-bridged system to achieve a parallel ring structure [4]. Thus, we decided to compare the well-known and very extensive chemistry of the bent bis- η-cyclopentadienyl derivatives of molybdenum and tungsten [5] with that of analogues containing an ansaCR_{2} system; for example, the derivatives of the moiety $\mathrm{M}\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CMe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]$, where $\mathrm{M}=\mathrm{Mo}$ or W .

Recently the use of the compound [$\mathrm{WCl}_{4} \mathrm{dme}$] (dme $=1,2$-dimethoxyethane) for the synthesis of bis- η -cyclopentadienyl-tungsten compounds has been described [6]. We have found that treatment of [MoCl_{4} dme] with $\left[\mathrm{Li}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CMe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Li}\right]$ in diethyl ether gives red-brown [$\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}$] (1) in 52% yield. The red-brown tungsten analogue [$\mathrm{W}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}$] (2) was prepared similarly, in 64% yield, using [WCl_{4} dme]. Typically the new ansa compounds 1 and 2 were prepared on a $6-8 \mathrm{~g}$ scale.

Treatment of $\mathbf{1}$ and 2 with LiAlH_{4} in diethyl ether gave the corresponding pale yellow crystalline dihydrides $\left[\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{H}_{2}\right.$], where $\mathrm{M}=\mathrm{Mo}$ (3) and W (4) in ca. 30 and 40% yield respectively. The compounds 1-4 clearly will be synthons for an extensive development of the chemistry of the $\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}{ }^{-}\right.$ $\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}$) moiety. We have made a preliminary study of their chemistry and find substantial differences from that of the non-ansa analogues.

Thus, photolysis of a solution of $\mathbf{3}$ in benzene using a medium pressure mercury lamp for 100 h gave $>80 \%$ yield of the phenyl hydrido complex $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}{ }^{-}\right.\right.$ $\left.\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{PhH}$, 5. However, during prolonged photolysis of 4 in benzene for 100 h , monitoring by ${ }^{1} \mathrm{H}$-NMR spectroscopy showed there was no reaction.

Treatment of a suspension of 1 and 2 in toluene with dimethylzinc gave the expected dimethyl derivatives [W($\left.\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Me}_{2}$] (6) and [$\mathrm{Mo}(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Me}_{2}\right]$ (7) in ca. 45 and 30% yield, respectively. The tungsten derivative was treated with benzoic acid to give [$\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Me}$ $\left.\left(\mathrm{CO}_{2} \mathrm{Ph}\right)\right]$ (8) and this was further treated with $\mathrm{Na}\left[\mathrm{AlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}\right]$ to give the methyl hydrido compound [$\left.\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{MeH}\right]$ (9). When a solution of 9 in benzene was heated for 10 h at $80^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$-NMR spectroscopy showed that no reaction occurred.

There are three striking differences between the reactions of the ansa-bridged compounds described above and those of the non-bridged bis- η-cyclopentadienyl analogues. First, photolysis of [$\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{H}_{2}$] in benzene gives only the dimer $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mu-\sigma, \eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]_{2}$ [7]. The phenyl hydrido complex $[\mathrm{Mo}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{PhH}$] is not formed, and neither can this compound be made by alternative routes available to the tungsten analogue. Second, photolysis of [W η $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{H}_{2}$] in benzene readily gives the phenyl hydrido complex [$\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{PhH}$] [8], whilst under the same conditions 4 is completely unreactive. Third, in contrast to 9 , the methyl hydrido complex [W $(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MeH}\right]$ is thermally unstable above ca. $40^{\circ} \mathrm{C}$ and decomposes with the evolution of methane and formation of tungstenocene, a reactive intermediate [9] which can insert into carbon-hydrogen bonds [8]. For example, thermolysis of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MeH}\right]$ in benzene give the phenyl hydrido species [$\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{PhH}$] [9].

The above observations show that the ansa-bridged compounds [$\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{XY}$] (where $M=M o, X Y=H_{2}$ (3); PhH (5); and $M=W, X Y=H_{2}$ (4); MeH (9)) have a much greater stability towards reductive elimination of XY , under either thermal or photochemical conditions as appropriate, than the corresponding non-bridged bis- η-cyclopentadienyl analogues $\left[\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{XY}\right]$. The new reactions and structures proposed for compounds 1-9 are shown in Scheme 1 [10].

The compounds $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right.$ X_{2}], $\mathrm{X}=\mathrm{Cl}$ (10) and $\mathrm{X}=\mathrm{H}$ (11) were prepared using $\left[\mathrm{Li}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Li}\right]$ by a procedure analogous to that used for $\mathbf{1}$ and 3.

The crystal structures of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\right](2)$ and $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\right]$ (10) have been determined [11] and distances and angles pertinent to the discussion below are given in Tables 1 and 2, together with related data for $[\mathrm{W}(\eta-$

Scheme 1. Reagents and conditions: (i) in diethyl ether at room temperature; (ii) LiAlH_{4} in diethyl ether at $-78^{\circ} \mathrm{C}, 30-40 \%$; (iii) ZnMe_{2} in toluene $-78^{\circ} \mathrm{C}$; (iv) $h \nu$, benzene; (v) $\mathrm{PhCO}_{2} \mathrm{H}$ in petroleum ether (b.p. $100-120^{\circ} \mathrm{C}$) at reflux; (vi) $\mathrm{Na}\left[\mathrm{AlH}_{2}\left(\mathrm{OCH}_{2}\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2}$] in benzene at room temperature.
$\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{H}_{2}\right]$ (4), $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{H}_{2}\right](3)$ and for the non-bridged analogues. The structures of $\mathbf{2}$ and $\mathbf{1 0}$ are shown in Fig. 1. The data in Tables 1 and 2 show that, as expected, the bending angle θ is substantially smaller in the ansa-bridged compounds than in the non-bridged analogues and, therefore, the structures of intermediate 16 -electron fragments $\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right)$ would be substantially changed from a parallel ring structure found

Table 1
Selected distances (\AA) and angles $\left(^{\circ}\right) . M=W$ in $2 ; M=M o$ in 10

Compound	2	10
$\mathrm{M}-\mathrm{X}$	$2.452(2)$	$2.4621(4) ; 2.4694(4)$
$\mathrm{M}-\mathrm{Cp}($ cent $)$	1.948	$1.957 ; 1.958$
$\mathrm{M}-\mathrm{Cp}(1)$	1.939	$1.949 ; 1.950$
$\mathrm{M}-\mathrm{C}$	$2.224-2.452(7)$	$2.226-2.382(2)$
	av.	av.
$\mathrm{C}-\mathrm{C}$	$1.38(1)-1.462(8)$	$1.390-1.446(3)$
	av.	av.
$\mathrm{C}(\mathrm{Cp})-\mathrm{C}($ bridge $)$	$1.526(7)$	$1.508(2) ; 1.516(2)$
$\mathrm{X}-\mathrm{M}-\mathrm{C}(\phi)$	$81.85(8)$	$82.66(2)$
$\mathrm{X}-\mathrm{M}-\mathrm{Cp}($ cent $)$	$110.7 \quad 109.4$	$110.6 \quad 109.5$
		$109.6 \quad 111.1$
Cp(cent)-M-Cp(cent)	126.0	125.3
Bending angle (θ)	115.2	114.6
Cp-Cbr-Cp	$93.8(6)$	$93.6(1)$
Conformation	eclipsed	eclipsed

Table 2
Selected distances (\AA) and angles (${ }^{\circ}$)

Compound 1	$\mathbf{X}-\mathbf{M}-\mathbf{X}(\phi)$	Bending angle (θ)	Ref.
$\left[\mathrm{MoCp}_{2} \mathrm{Cl}_{2}\right]$	$82.0(2)$	$82.0(2)$	130.9
$\left[\mathrm{MoCp}_{2} \mathrm{H}_{2}\right]$	$75.5(3)$	145.8	$[19]$
$\left.\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right) \mathrm{Cl}_{2}\right]$	$82.66(2)$	114.6	$[20]$
$\left.\left[\mathrm{Mo}\left\{\mathrm{C}_{2} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\} \mathrm{H}_{2}\right]$	$80.3(2.8)$	121	$[21]$
$\left[\mathrm{W}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\} \mathrm{Cl}_{2}\right]$	$81.85(8)$	115.2	$[22]$
$\left[\mathrm{W}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\} \mathrm{H}_{2}\right]$	$95.5(4.0)$	120.3	$[21]$

${ }^{1} \mathrm{Cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}$.
for the unbridged $\left[\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right.$], where $\mathrm{M}=\mathrm{Cr}, \mathrm{W}$ [12]. In contrast the $\mathrm{Cl}-\mathrm{M}-\mathrm{Cl}$ angles (ϕ) for $\mathbf{1 , 2}$ and 10 and the non-bridged $\left[\mathrm{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right.$] are closely similar. Also, in both 2 and 10, the bond angle at the $\mathrm{C}(6)$ atom of ca. $94-97^{\circ}$ is significantly below the tetrahedral value of 109.5°. The photoelectron spectrum of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{H}_{2}\right]$ shows that the ionisation energy associated with the d^{2} electron is 6.47 eV , and is closely similar to that for the non-bridged analogue [12]. It appears that the changes in electron energies associated with changes of θ [13] are not reflected in the $\mathrm{X}-\mathrm{M}-\mathrm{X}$ grouping. In conclusion, the

Fig. 1. Molecular structure of (a) 2 and (b) 10.
ansa-bridged compounds 3-5 and 9 are much more stable towards reductive elimination reactions than are the related non-bridged compounds. It seems probable that, as suggested by Smith et al. for ansa-bis- η-cyclopentadienyltitanium compounds [1], the increased stability reflects the inability of the 16 -electron moiety $\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CMe}_{2}-\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right)$ to adopt a parallel ring sandwich structure.

Acknowledgements

We thank the Accademia Nazionale dei Lincei and the Royal Society for an exchange fellowship (to L.L.).

References and notes

[1] (a) J.A. Smith, J. von Seyerl, G. Huttner and H.H. Brintzinger, J. Organomet. Chem., 173 (1979) 175; (b) W. Mengele, J. Diebold, C. Troll, W. Roll and H.H. Brintzinger, Organometallics, 12 (1993) 1931.
[2] R.L. Halterman, Chem. Rev., 92 (1992) 965.
[3] (a) J.A. Ewen, J. Am. Chem. Soc., 106 (1984) 6355; (b) W. Kaminsky, K. Kulper, H.H. Brintzinger and F.R.W.P. Wild, Angew. Chem., Int. Ed. Engl., 24 (1985) 507; (b) J.A. Ewen, L. Haspeslagh, J.L. Atwood and H. Zhang, J. Am. Chem. Soc., 109 (1987) 6544.
[4] J.A. Smith and H.H. Brintzinger, J. Organomet. Chem., 218 (1981) 159; B. Dorer, J. Diebold, O. Weg and H.-H. Britzinger, J. Organomet. Chem., 427 (1992) 245.
[5] R. Davis and L.A.P. Kane-Maguire, in G. Wilkinson, F.G.A. Stone and E.W. Abel, (Eds.), Comprehensive Organometallic Chemistry, Vol. 3, Pergamon, Oxford, 1982.
[6] C. Persson and C. Andersson, Organometallics, 12 (1993) 2370.
[7] M. Berry, N.J. Cooper, M.L.H. Green and S.J. Simpson, J. Chem. Soc. Dalton Trans., (1980) 29.
[8] M.L.H. Green, Pure \& Appl. Chem., 50 (1978) 27.
[9] N.J. Cooper, M.L.H. Green and R. Mahtab, J. Chem. Soc. Dalton Trans., (1979) 1557.
[10] Selected spectroscopic data: NMR data recorded at 300 Mz $\left({ }^{1} \mathrm{H}\right)$ or at $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ and given as δ relative to SiMe_{4}. Mass spectra (MS) measured using electron-impact techniques. Satisfactory microanalysis have been obtained for all new compounds.

Selected NMR, MS and IR data:
$1\left[\mathrm{Mo}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\} \mathrm{Cl}_{2}\right]:{ }^{1} \mathrm{H}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: 6.24(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 5.02\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. IR: $\mathrm{Mo}-\mathrm{Cl}$, $320 \mathrm{~m}, 300 \mathrm{~m}, 270 \mathrm{~m}$.
$2\left[\mathrm{~W}\left[\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right) \mathrm{Cl}_{2}\right]:{ }^{i} \mathrm{H}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: 5.93 \quad(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 5.43\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.83\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) . \mathrm{MS}: 426\left(\mathrm{M}^{+}\right)$. IR: $\mathrm{W}-\mathrm{Cl}, 320 \mathrm{~m}, 300 \mathrm{~m}, 270 \mathrm{~m}$.
$3\left[\mathrm{Mo}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\} \mathrm{H}_{2}\right]:{ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}: 4.96\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.54\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right),-4.77(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$, $\mathrm{C}_{6} \mathrm{D}_{6}$: 88.6. (s; $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 70.7\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 51.3\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), \mathrm{C}_{\mathrm{ipso}}$), 33.7 (s; C(CH3 $\left.)_{2}\right), 21.7\left(\mathrm{~s} ; \mathrm{CH}_{3}\right)$. IR: W-H, 1760s, 1750 s .

4 [W\{C(CH3 $\left.\left.)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\} \mathrm{H}_{2}\right]:{ }^{\mathrm{i}} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6} \mathrm{ppm}: 4.89(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.02\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right),-7.33(2 \mathrm{H}, \mathrm{s}$, $J(\mathrm{WH})=92) .{ }^{1.3} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}: 86.6 .\left(\mathrm{s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 64.8\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 43.3(\mathrm{~s} ;$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) . \mathrm{C}_{\text {ipso }}$), $33.2\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 22.1\left(\mathrm{~s} ; \mathrm{CH}_{3}\right) . \mathrm{MS}: 355\left(\mathrm{M}^{+}{ }_{-}\right.\right.$ H_{2}). IR: $\mathrm{W}-\mathrm{H}, 1833 \mathrm{~s}, 1823 \mathrm{~s}$.
$5\left[\mathrm{Mo}\left\{\mathrm{C}^{\left.\left.\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]:{ }^{1} \mathrm{H},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}: 7.59}\right.\right.$ $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.48$
$\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.27$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 0.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.\right.$, $-4.60(1 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}: 148.8\left(\mathrm{~s} ; \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 128.5\left(\mathrm{~s} ; \mathrm{C}_{6} \mathrm{H}_{5}\right)$; 125.9 (s; $\mathrm{C}_{6} \mathrm{H}_{5}$) ; $123.2\left(\mathrm{~s} ; \mathrm{C}_{6} \mathrm{H}_{5}\right.$); 107.6 (s; $\mathrm{C}_{5} \mathrm{H}_{4}$), 90.2 (s; $\mathrm{C}_{5} \mathrm{H}_{4}$), $76.6\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.2\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 58.6$ ($\mathrm{s} ; \mathrm{C}_{5} \mathrm{H}_{4}$), $\mathrm{C}_{\mathrm{ipso}}$),
 $\left(\mathrm{M}^{+}\right)$.
$6\left[\mathrm{~W}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\}\left(\mathrm{CH}_{3}\right)_{2}\right]:{ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}: 4.46(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.44\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left\{\left(\mathrm{CH}_{3}\right)_{2}\right\}, 0.17(6 \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{CH}_{3}\right)^{13} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}: 104.8\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 67.8\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 52.2\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right.$, $\mathrm{C}_{\text {ipso }}$), $\left.30.9\left(\mathrm{~s} ; \mathrm{C}_{3} \mathrm{CH}_{3}\right)_{2}\right), 22.7\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right),-22.7\left(\mathrm{~s} ; \mathrm{CH}_{3}\right)$. MS: $386\left(\mathrm{M}^{+}\right)$.
$\left.7\left[\mathrm{Mof}\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right]\left(\mathrm{CH}_{3}\right)_{2}\right]:{ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}: 4.48(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.11\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.51\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 0.13(6 \mathrm{H}, \mathrm{s}\right.$, CH_{3}). ${ }^{13} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}: 106.3\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 73.4\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 59.2\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right.$ $\mathrm{C}_{\text {ipso }}$), $31.6\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 21.9\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right),-10.7\left(\mathrm{~s} ; \mathrm{CH}_{3}\right)\right.$.
$8\left[\mathrm{~W}\left\{\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\}\left(\mathrm{CH}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CPh}\right)\right]:{ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}: 8.48(2 \mathrm{H}$, d, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.20\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.55(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}^{\left(\mathrm{CH}_{3}\right)}\right)_{2}, 0.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2},-0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, ppm: 173.5 (s; $\mathrm{CO}_{2} \mathrm{Ph}$); 135.6 (s; $\mathrm{C}_{6} \mathrm{H}_{5}$); 130.7 ($\mathrm{s} ; \mathrm{C}_{6} \mathrm{H}_{5}$); 130.4 ($\mathrm{s} ; \mathrm{C}_{6} \mathrm{H}_{5}$) ; $130.2\left(\mathrm{~s} ; \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 114.1\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 106.7\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right.$), $\left.74.7\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.1\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 59.5\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), \mathrm{C}_{\text {ipso }}\right), 29.9(\mathrm{~s}$; $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right\} 22.4$ (s; $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 21.6$ (s; $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right),-20.5\left(\mathrm{~s} ; \mathrm{CH}_{3}\right)$.
$9\left[\mathrm{~W}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right\}\left(\mathrm{CH}_{3}\right) \mathrm{H}\right]:{ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}: 5.13(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.57(3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{2}, 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right),-6.30(1 \mathrm{H},\right.}$ $\mathrm{s}, J(\mathrm{WH})=62) .{ }^{13} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}: 104.5\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 86.6\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.5$ $\left(\mathrm{s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 63.3\left(\mathrm{~s}: \mathrm{C}_{5} \mathrm{H}_{4}\right), 47.7\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), \mathrm{C}_{\text {ipso }}$), 31.9 (s; $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.4\left(\mathrm{~s} ; \mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)}\right), 22.3\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2},-37.1\left(\mathrm{~s} ; \mathrm{CH}_{3}\right)\right.$. MS: $370\left(\mathrm{M}^{+}\right)$.
$10\left[\mathrm{Mo}\left(\mathrm{C}_{(}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right) \mathrm{Cl}_{2}\right]:{ }^{\mathrm{H}} \mathrm{H}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: 6.24(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 1.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.37(4 \mathrm{H}, \mathrm{m}$, CH_{2}).
$\left.11\left[\mathrm{Mol}\left(\mathrm{C}_{4} \mathrm{C}_{8}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{H}_{2}\right]:{ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}: 4.98\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 1.42\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.07\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $-4.74(2 \mathrm{H}, \mathrm{s}) .{ }^{\mathrm{P}} \mathrm{C}^{4}, \mathrm{C}_{6} \mathrm{D}_{6}, 88.7\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.8\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 50.6$ ($\mathrm{s} ; \mathrm{C}_{5} \mathrm{H}_{4}$), $\mathrm{C}_{\text {ipso }}$), 45.7 ($\left.\mathrm{s} ; \mathrm{C}_{2} \mathrm{C}_{4} \mathrm{H}_{8}\right)$), 33.4 ($\mathrm{s} ; \mathrm{CH}_{2}$), 23.1 ($\mathrm{s} ;$ $\left(\mathrm{H}_{2}\right)$.
Crystal data for 2. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~W}, M=425.01$, monoclinic, $a=$ 12.2010(9), $b=10.7608(5), c=9.8770(8) \AA, \beta=110.62(1), V=$ $1213.7(2) \AA^{3}$, space group $C 2 / c, Z=4, D_{\mathrm{c}}=2.33 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=800, \mu=101.37 \mathrm{~cm}^{-1}$. Crystal dimensions ca. $0.03 \times$ $0.19 \times 0.43 \mathrm{~mm}^{3}$. 2923 measured reflections ($1.0<\theta<34^{\circ},-h$, $h .-l, k,-l, l), 2473$ unique (merging $R=0.055$), 2043 with the $l>4 \sigma(I)$ in refinement (74 variables, observ. $/$ variab. $=27.6$, weighting coefficients $15.0,-9.7,10.5$), maximum and minimum peaks in the final difference map 1.07 and $-1.23 \mathrm{e}^{-3}, R=$ $0.053, R_{w}=0.060$.

Crystal data for 10. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{Mo}, M=363.14$, triclinic, $a=$ $8.1632(8), b=8.3435(4), \quad c=10.4484(4) \AA, \alpha=70.58(1), \quad \beta=$ $75.99(1), \gamma=84.65(1), U=651.1(1) \AA^{3}$, space group $P \overline{1}, Z=2$,
$D_{\mathrm{c}}=1.85 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=364, \mu=13.76 \mathrm{~cm}$. Crystal dimensions ca. $0.06 \times 0.16 \times 0.34 \mathrm{~mm}^{3}$. 3297 measured reflections (1.0 $<\theta<27^{\circ},-h, h,-k, k,-l, l$), 2820 unique (merging $R=$ 0.012), 2531 with the $I>3 \sigma(I)$ in refinement (163 variables, observ. $/$ variab. $=15.5$, weighting coefficients $5.6,-2.5,4.6$), maximum and minimum peaks in the final difference map 0.40 and $-0.36 \mathrm{e}^{-3}, R=0.019, R_{w}=0.023$.

Data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer ($\omega-2 \theta$ mode with the ω scan width $=$ $0.77-0.79+0.34 \tan \theta, \omega$ scan speed $1.4-10.1^{\circ} \mathrm{min}^{-1}$, the ratio of the scanning rates $\omega / \theta=1.2$, graphite-monochromated $\operatorname{MoK} \alpha$ radiation, $\lambda=0.71069 \AA$).
For both structures corrections for Lorentz and polarization effects as well as empirical correction for absorption [14] based on azimuthal scan data were applied. The structures of 2 and 10 were solved by direct methods and refined by full-matrix leastsquares technique with all non-hydrogen atoms in anisotropic approximation. In 10 all hydrogen atoms were located in the difference Fourier maps, in 2 all H -atoms were placed geometrically. For both structures, hydrogen atoms were included in the refinement with the fixed positional and thermal parameters. Chebyshev weighting scheme was applied [15]. Anomalous dispersion contributions were included in the calculated structure factors. An empirical absorption correction using the difabs [16] program was applied after isotropic convergence. Crystallographic calculations were carried out using the crystals [17] program package on Micro VAX 3800 computer. Neutral atom scattering factors were taken from the usual sources [18]. Additional material available from Cambridge Crystallographic Data Centre comprises atom coordinates, thermal parameters and remaining bond lengths and angles.
[12] J.C. Green, S.E. Jackson, B. Higginson, J. Chem. Soc. Dalton Trans., (1975) 403.
[13] J.W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
[14] A.C.T. North, D.C. Philips and F.S. Mathews, Acta Crystallogr., Sect. A, 24 (1968) 351.
[15] D.J. Watkin and J.R. Carruthers, Acta Crystallogr., Sect. A, 35 (1979) 698.
[16] N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
[17] D.J. Watkin, J.R. Carruthers and P.W. Betteridge, crystals user guide, Chemical Crystallography Laboratory, University of Oxford, 1985.
[18] International Tables for Crystallography, Vol. 4, Kynoch, Birmingham, 1974.
[19] K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton and G.V. Rees, Acta Crystallogr., Sect. B, 30 (1974) 2290.
[20] A.J. Schultz, K.L. Stearley, J.M. Williams, R. Mink and G.D. Stucky, Inorg. Chem., 16 (1977) 3303.
[21] This work.
[22] L. Labella, A. Chernega, M.L.H. Green, unpublished results.

[^0]: * Corresponding author.

