

Journal of Organometallic Chemistry 485 (1995) C18-C21

Journal ofOrgano metallic Chemistry

Preliminary communication

Ansa-[(2,2-bis- η -cyclopentadienyl)propane]-molybdenum and -tungsten chemistry and related studies

Luca Labella ^a, Alexander Chernega ^b, Malcolm L.H. Green ^{a,*}

^a Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK ^b Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, UK

Received 9 May 1994

Abstract

The compounds $[M(\eta-C_5H_4-CMe_2\mu-C_5H_4)X_2]$ (where M = Mo and $X_2 = H_2$, Cl_2 , Me_2 , PhH; M = W and $X_2 = H_2$, Cl_2^* , Me_2 , $Me(PhCO_2)$, MeH) and $[Mo(\eta-C_5H_4C(CH_2)_4-\eta-C_5H_4)X_2]$ (X = H, Cl^*) are described. For the complexes marked with an asterisk the crystal structures are reported. These *ansa*-bridged compounds exhibit substantially different reactivities from those of the unbridged analogues.

Keywords: Molybdenum; Tungsten; Ansa-bridging; 2,2-bis- η -cyclopentadienyl(propane)

Recently there has been considerable interest in the chemistry of the so-called stereorigid, *ansa*-bridged bis- η -cyclopentadienyl derivatives of the Group IV metals [1]; e.g. {*ansa*-M(η -C₅H₄-ER₂- η -C₅H₄)]Cl₂} (where M = Ti, Zr, Hf and E = Si, C [2]), since these compounds are precursors for homogeneous catalyst systems for α -olefin polymerisation [3]. The structural changes associated with the presence of the single atom *ansa*-bridged compounds have been established; for example, a decrease in the bending angle θ . (The bending angle is defined as the angle between the lines from the metal centre normal to the planes of the η -cyclopentadienyl rings.)

Little is known of the electronic consequences of the introduction of such an *ansa* bridge. Smith and Brintzinger have studied the chemistry of the $\{M[(\eta - C_5H_4 - (CH_2)_2 - \eta - C_5H_4)]\}[M = Ti, V]$ systems and sug-

0022-328X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05006-W gested that differences in reactivity between these and the non-bridged $Ti(\eta - C_5H_5)_2$ system may reflect the inability of *ansa*-bridged system to achieve a parallel ring structure [4]. Thus, we decided to compare the well-known and very extensive chemistry of the bent bis- η -cyclopentadienyl derivatives of molybdenum and tungsten [5] with that of analogues containing an *ansa*-CR₂ system; for example, the derivatives of the moiety $M[(\eta - C_5H_4)CMe_2(\eta - C_5H_4)]$, where M = Mo or W.

Recently the use of the compound $[WCl_4dme]$ (dme = 1,2-dimethoxyethane) for the synthesis of bis- η -cyclopentadienyl-tungsten compounds has been described [6]. We have found that treatment of $[MoCl_4 dme]$ with $[Li(C_5H_4)CMe_2(C_5H_4)Li]$ in diethyl ether gives red-brown $[Mo(\eta-C_5H_4-CMe_2-\eta-C_5H_4)Cl_2]$ (1) in 52% yield. The red-brown tungsten analogue $[W(\eta-C_5H_4-CMe_2-\eta-C_5H_4)Cl_2]$ (2) was prepared similarly, in 64% yield, using $[WCl_4dme]$. Typically the new *ansa* compounds 1 and 2 were prepared on a 6-8 g scale.

Treatment of 1 and 2 with LiAlH₄ in diethyl ether gave the corresponding pale yellow crystalline dihydrides [M(η -C₅H₄-CMe₂- η -C₅H₄)H₂], where M = Mo (3) and W (4) in ca. 30 and 40% yield respectively. The compounds 1-4 clearly will be synthons for an extensive development of the chemistry of the M(η -C₅H₄-CMe₂- η -C₅H₄) moiety. We have made a preliminary study of their chemistry and find substantial differences from that of the non-*ansa* analogues.

^{*} Corresponding author.

Treatment of a suspension of 1 and 2 in toluene with dimethylzinc gave the expected dimethyl derivatives $[W(\eta-C_5H_4-CMe_2-\eta-C_5H_4)Me_2]$ (6) and $[Mo(\eta-C_5H_4-CMe_2-\eta-C_5H_4)Me_2]$ (7) in ca. 45 and 30% yield, respectively. The tungsten derivative was treated with benzoic acid to give $[W(\eta-C_5H_4-CMe_2-\eta-C_5H_4)Me$ (CO₂Ph)] (8) and this was further treated with Na[AlH₂(OCH₂CH₂OMe)₂] to give the methyl hydrido compound $[W(\eta-C_5H_4-CMe_2-\eta-C_5H_4)MeH]$ (9). When a solution of 9 in benzene was heated for 10 h at 80°C, ¹H-NMR spectroscopy showed that no reaction occurred.

There are three striking differences between the reactions of the ansa-bridged compounds described above and those of the non-bridged bis- η -cyclopentadienyl analogues. First, photolysis of $[Mo(\eta - C_5H_5)_2H_2]$ in benzene gives only the dimer $[Mo(\eta - C_5H_5)(\mu - \sigma, \eta (C_5H_4)_2$ [7]. The phenyl hydrido complex [Mo(η - $(C_5H_5)_2$ PhH] is not formed, and neither can this compound be made by alternative routes available to the tungsten analogue. Second, photolysis of $[W(\eta C_5H_5$, H_2 in benzene readily gives the phenyl hydrido complex $[W(\eta - C_5H_5)_2PhH]$ [8], whilst under the same conditions 4 is completely unreactive. Third, in contrast to 9, the methyl hydrido complex [W(η - $(C_5H_5)_2$ MeH] is thermally unstable above ca. 40°C and decomposes with the evolution of methane and formation of tungstenocene, a reactive intermediate [9] which can insert into carbon-hydrogen bonds [8]. For example, thermolysis of $[W(\eta - C_5H_5)_2MeH]$ in benzene give the phenyl hydrido species $[W(\eta - C_5H_5)_2PhH]$ [9].

The above observations show that the *ansa*-bridged compounds $[M(\eta-C_5H_4-CMe_2-\eta-C_5H_4)XY]$ (where $M = Mo, XY = H_2$ (3); PhH (5); and $M = W, XY = H_2$ (4); MeH (9)) have a much greater stability towards reductive elimination of XY, under either thermal or photochemical conditions as appropriate, than the corresponding non-bridged bis- η -cyclopentadienyl analogues $[M(\eta-C_5H_5)_2XY]$. The new reactions and structures proposed for compounds 1–9 are shown in Scheme 1 [10].

The compounds $[Mo(\eta-C_5H_4-C(CH_2)_4-\eta-C_5H_4)X_2]$, X = Cl (10) and X = H (11) were prepared using $[Li(C_5H_4)-C(CH_2)_4-(C_5H_4)Li]$ by a procedure analogous to that used for 1 and 3.

The crystal structures of $[W(\eta-C_5H_4-CMe_2-\eta-C_5H_4)Cl_2]$ (2) and $[Mo(\eta-C_5H_4-C(CH_2)_4-\eta-C_5H_4)Cl_2]$ (10) have been determined [11] and distances and angles pertinent to the discussion below are given in Tables 1 and 2, together with related data for $[W(\eta-C_5H_4)Cl_2]$

Scheme 1. Reagents and conditions: (i) in diethyl ether at room temperature; (ii) LiAlH₄ in diethyl ether at -78° C, 30-40%; (iii) ZnMe₂ in toluene -78° C; (iv) $h\nu$, benzene; (v) PhCO₂H in petroleum ether (b.p. 100-120^{\circ}C) at reflux; (vi) Na[AlH₂(OCH₂ CH₂OCH₃)₂] in benzene at room temperature.

 C_5H_4 -CMe₂- η -C₅H₄)H₂] (4), [Mo(η -C₅H₄-CMe₂- η -C₅H₄)H₂] (3) and for the non-bridged analogues. The structures of 2 and 10 are shown in Fig. 1. The data in Tables 1 and 2 show that, as expected, the bending angle θ is substantially smaller in the *ansa*-bridged compounds than in the non-bridged analogues and, therefore, the structures of intermediate 16-electron fragments M(η -C₅H₄-CMe₂- η -C₅H₄) would be substantially changed from a parallel ring structure found

Table 1 Selected distances (Å) and angles (°). M = W in 2; M = Mo in 10

Compound	2	10
M-X	2.452(2)	2.4621(4); 2.4694(4)
M-Cp(cent)	1.948	1.957; 1.958
M-Cp(1)	1.939	1.949; 1.950
M-C	2.224-2.452(7)	2.226-2.382(2)
	av.	av.
C-C	1.38(1)-1.462(8)	1.390-1.446(3)
	av.	av.
C(Cp)–C(bridge)	1.526(7)	1.508(2); 1.516(2)
$X-M-C(\phi)$	81.85(8)	82.66(2)
X-M-Cp(cent)	110.7 109.4	110.6 109.5
		109.6 111.1
Cp(cent)-M-Cp(cent)	126.0	125.3
Bending angle (θ)	115.2	114.6
Cp–Cbr–Cp	93.8(6)	93.6(1)
Conformation	eclipsed	eclipsed

Table 2 Selected distances (Å) and angles (°)

Compound ¹	$X-M-X(\phi)$	Bending angle (θ)	Ref.
[MoCp ₂ Cl ₂]	82.0(2) 82.0(2)	130.9 130.2	[19]
[MoCp ₂ H ₂]	75.5(3)	145.8	[20]
$[Mo{C(C_4H_8)(C_5H_4)_2}Cl_2]$	82.66(2)	114.6	[21]
$[Mo{C(CH_3)_2(C_5H_4)_2}H_2]$	80.3(2.8)	121	[22]
$[W{C(CH_3)_2(C_5H_4)_2}CI_2]$	81.85(8)	115.2	[21]
$[W{C(CH_3)_2(C_5H_4)_2}H_2]$	95.5(4.0)	120.3	[22]

¹ Cp = η -C₅H₅.

for the unbridged $[M(\eta-C_5H_5)_2]$, where M = Cr, W [12]. In contrast the Cl-M-Cl angles (ϕ) for 1, 2 and 10 and the non-bridged $[Mo(\eta-C_5H_5)_2Cl_2]$ are closely similar. Also, in both 2 and 10, the bond angle at the C(6) atom of ca. 94–97° is significantly below the tetrahedral value of 109.5°. The photoelectron spectrum of $[W(\eta-C_5H_4-CMe_2-\eta-C_5H_4)H_2]$ shows that the ionisation energy associated with the d² electron is 6.47 eV, and is closely similar to that for the non-bridged analogue [12]. It appears that the changes in electron energies associated with changes of θ [13] are not reflected in the X-M-X grouping. In conclusion, the

Fig. 1. Molecular structure of (a) 2 and (b) 10.

ansa-bridged compounds 3-5 and 9 are much more stable towards reductive elimination reactions than are the related non-bridged compounds. It seems probable that, as suggested by Smith et al. for ansa-bis- η -cyclopentadienyltitanium compounds [1], the increased stability reflects the inability of the 16-electron moiety $M(\eta$ -C₅H₄-CMe₂- η -C₅H₄) to adopt a parallel ring sandwich structure.

Acknowledgements

We thank the Accademia Nazionale dei Lincei and the Royal Society for an exchange fellowship (to L.L.).

References and notes

- (a) J.A. Smith, J. von Seyerl, G. Huttner and H.H. Brintzinger, J. Organomet. Chem., 173 (1979) 175; (b) W. Mengele, J. Diebold, C. Troll, W. Roll and H.H. Brintzinger, Organometallics, 12 (1993) 1931.
- [2] R.L. Halterman, Chem. Rev., 92 (1992) 965.
- [3] (a) J.A. Ewen, J. Am. Chem. Soc., 106 (1984) 6355; (b) W. Kaminsky, K. Kulper, H.H. Brintzinger and F.R.W.P. Wild, Angew. Chem., Int. Ed. Engl., 24 (1985) 507; (b) J.A. Ewen, L. Haspeslagh, J.L. Atwood and H. Zhang, J. Am. Chem. Soc., 109 (1987) 6544.
- [4] J.A. Smith and H.H. Brintzinger, J. Organomet. Chem., 218 (1981) 159; B. Dorer, J. Diebold, O. Weg and H.-H. Britzinger, J. Organomet. Chem., 427 (1992) 245.
- [5] R. Davis and L.A.P. Kane-Maguire, in G. Wilkinson, F.G.A. Stone and E.W. Abel, (Eds.), *Comprehensive Organometallic Chemistry*, Vol. 3, Pergamon, Oxford, 1982.
- [6] C. Persson and C. Andersson, Organometallics, 12 (1993) 2370.
- [7] M. Berry, N.J. Cooper, M.L.H. Green and S.J. Simpson, J. Chem. Soc. Dalton Trans., (1980) 29.
- [8] M.L.H. Green, Pure & Appl. Chem., 50 (1978) 27.
- [9] N.J. Cooper, M.L.H. Green and R. Mahtab, J. Chem. Soc. Dalton Trans., (1979) 1557.
- [10] Selected spectroscopic data: NMR data recorded at 300 Mz (¹H) or at 75 MHz (¹³C{¹H}) and given as δ relative to SiMe₄. Mass spectra (MS) measured using electron-impact techniques. Satisfactory microanalysis have been obtained for all new compounds.

Selected NMR, MS and IR data:

1 $[Mo{C(CH_3)_2(C_5H_4)_2}Cl_2]$: ¹H, CD_2Cl_2 : 6.24 (4H, m, C_5H_4), 5.02 (4H, m, C_5H_4), 0.89 (6H, s, CH_3). IR: Mo-Cl, 320m, 300m, 270m.

2 $[W{C(CH_3)_2(C_5H_4)_2}Cl_2]: {}^{1}H, CD_2Cl_2: 5.93$ (4H, m, C₅H₄), 5.43 (4H, m, C₅H₄), 0.83 (6H, s, CH₃). MS: 426 (M⁺). IR: W-Cl, 320m, 300m, 270m.

3 [Mo{C(CH₃)₂(C₅H₄)₂]H₂]: ¹H, C₆D₆: 4.96 (4H, m, C₅H₄), 4.08 (4H, m, C₅H₄), 0.54 (6H, s, CH₃), -4.77 (2H, s). ¹³C, C₆D₆: 88.6. (s; C₅H₄), 70.7 (s; C₅H₄), 51.3 (s; C₅H₄), C_{ipso}), 33.7 (s; C(CH₃)₂), 21.7 (s; CH₃). IR: W–H, 1760s, 1750s.

4 [W{C(CH₃)₂(C₅H₄)₂]H₂]: ¹H, C₆D₆ ppm: 4.89 (4H, m, C₅H₄), 4.02 (4H, m, C₅H₄), 0.46 (6H, s, CH₃), -7.33 (2H, s, J(WH) = 92). ¹³C, C₆D₆: 86.6. (s; C₅H₄), 64.8 (s; C₅H₄), 43.3 (s; C₅H₄). C_{ipso}), 33.2 (s; C(CH₃)₂, 22.1 (s; CH₃). MS: 355 (M⁺ – H₃). IR: W–H, 1833s, 1823s.

5 $[Mo{C(CH_3)_2(C_5H_4)_2}(H)(C_6H_5)]: {}^{1}H, (CD_3)_2CO: 7.59$ (2H, d, C₆H₅), 7.36 (1H, m, C₆H₅), 6.67 (2H, m, C₆H₅), 5.48 (2H, m, C_5H_4), 5.13 (2H, m, C_5H_4), 4.45 (2H, m, C_5H_4), 4.27 (2H, m, C_5H_4), 1.20 (3H, s, $C(CH_3)_2$, 0.87 (3H, s, $C(CH_3)_2$, -4.60 (1H, s). ¹³C, $(CD_3)_2CO$: 148.8 (s; C_6H_5); 128.5 (s; C_6H_5); 125.9 (s; C_6H_5); 123.2 (s; C_6H_5); 107.6 (s; C_5H_4), 90.2 (s; C_5H_4), 76.6 (s; C_5H_4), 71.2 (s; C_5H_4), 58.6 (s; C_5H_4), C_{ipso}), 22.3 (s; $C(CH_3)_2$), 22.2 (s; $C(CH_3)_2$). IR, Mo-H 1790. MS: 343 (M⁺).

6 $[W{C(CH_3)_2(C_5H_4)_2}(CH_3)_2]$: ¹H, C₆D₆: 4.46 (4H, m, C₅H₄), 4.10 (4H, m, C₅H₄), 0.44 (6H, s, C{(CH_3)_2}), 0.17 (6H, s, CH₃) ¹³C, C₆D₆: 104.8 (s; C₅H₄), 67.8 (s; C₅H₄), 52.2 (s; C₅H₄, C_{ipso}), 30.9 (s; C(CH_3)_2), 22.7 (s; C(CH_3)_2), -22.7 (s; CH₃). MS: 386 (M⁺).

7 $[Mo\{C(CH_3)_2(C_5H_4)_2)(CH_3)_2]$: ¹H, C₆D₆: 4.48 (4H, m, C₅H₄), 4.11 (4H, m, C₅H₄), 0.51 (6H, s, C(CH₃)₂, 0.13 (6H, s, CH₃). ¹³C, C₆D₆: 106.3 (s; C₅H₄), 73.4 (s; C₅H₄), 59.2 (s; C₅H₄, C_{ipso}), 31.6 (s; C(CH₃)₂, 21.9 (s; C(CH₃)₂), -10.7 (s; CH₃). **8** $[W\{C(CH_3)_2(C_5H_4)_2\}(CH_3)(O_2CPh)]$: ¹H, C₆D₆: 8.48 (2H,

8 [W{C(CH₃)₂(C₅H₄)₂}(CH₃)(O₂CPh)]: ¹H, C₆D₆: 8.48 (2H, d, C₆H₅), 7.20 (3H, m, C₆H₅), 5.32 (2H, m, C₅H₄), 5.15 (2H, m, C₅H₄), 4.82 (2H, m, C₅H₄), 3.99 (2H, m, C₅H₄), 0.55 (3H, s, C(CH₃)₂, 0.46 (3H, s, C(CH₃)₂, -0.01 (3H, s, CH₃). ¹³C, C₆D₆, ppm: 173.5 (s; CO₂Ph); 135.6 (s; C₆H₅); 130.7 (s; C₆H₅); 130.4 (s; C₆H₅); 130.2 (s; C₆H₅); 114.1 (s; C₅H₄), 106.7 (s; C₅H₄), 74.7 (s; C₅H₄), 70.1 (s; C₅H₄), 59.5 (s; C₅H₄), C_{ipso}), 29.9 (s; C(CH₃)₂) 22.4 (s; C(CH₃)₂, 21.6 (s; C(CH₃)₂), -20.5 (s; CH₃).

9 $[W(C(CH_3)_2(C_5H_4)_2)(CH_3)H]$: ¹H, C₆D₆: 5.13 (2H, m, C₅H₄), 4.41 (4H, m, C₅H₄), 3.79 (2H, m, C₅H₄), 0.57 (3H, s, C(CH₃)₂, 0.28 (3H, s, C(CH₃)₂, 0.12 (3H, s, CH₃), -6.30 (1H, s, *J*(WH) = 62). ¹³C, C₆D₆: 104.5 (s; C₅H₄), 86.6 (s; C₅H₄), 70.5 (s; C₅H₄), 63.3 (s; C₅H₄), 47.7 (s; C₅H₄), C_{ipso}), 31.9 (s; C(CH₃)₂), 22.4 (s; C(CH₃)₂), 22.3 (s; C(CH₃)₂, -37.1 (s; CH₃). MS: 370 (M⁺).

10 [Mo{C(C₄H₈)(C₅H₄)₂]Cl₂]: ¹H, CD₂Cl₂: 6.24 (4H, m, C₅H₄), 4.95 (4H, m, C₅H₄), 1.69 (4H, m, CH₂), 1.37 (4H, m, CH₂).

11 [Mo{C(C₄H₈)(C₅H₄)₂}H₂]: ¹H, C₆D₆: 4.98 (4H, m, C₅H₄), 4.08 (4H, m, C₅H₄), 1.42 (4H, m, CH₂), 1.07 (4H, m, CH₂), -4.74 (2H, s). ¹³C, C₆D₆, 88.7 (s; C₅H₄), 71.8 (s; C₅H₄), 50.6 (s; C₅H₄), C_{ipso}), 45.7 (s; C{C₄H₈}), 33.4 (s; CH₂), 23.1 (s; CH₃).

Crystal data for 2. $C_{13}H_{14}Cl_2W$, M = 425.01, monoclinic, a = 12.2010(9), b = 10.7608(5), c = 9.8770(8) Å, $\beta = 110.62(1)$, V = 1213.7(2) Å³, space group C2/c, Z = 4, $D_c = 2.33$ g cm⁻³, F(000) = 800, $\mu = 101.37$ cm⁻¹. Crystal dimensions ca. $0.03 \times 0.19 \times 0.43$ mm³. 2923 measured reflections $(1.0 < \theta < 34^{\circ}, -h, h, -l, k, -l, l)$, 2473 unique (merging R = 0.055), 2043 with the $l > 4\sigma(I)$ in refinement (74 variables, observ./variab. = 27.6, weighting coefficients 15.0, -9.7, 10.5), maximum and minimum peaks in the final difference map 1.07 and -1.23 eÅ⁻³, R = 0.053, $R_w = 0.060$.

Crystal data for **10**. $C_{15}H_{16}Cl_2Mo$, M = 363.14, triclinic, a = 8.1632(8), b = 8.3435(4), c = 10.4484(4) Å, $\alpha = 70.58(1)$, $\beta = 75.99(1)$, $\gamma = 84.65(1)$, U = 651.1(1) Å³, space group $P\overline{1}$, Z = 2,

 $D_c = 1.85 \text{ g cm}^{-3}$, F(000) = 364, $\mu = 13.76 \text{ cm}$. Crystal dimensions ca. $0.06 \times 0.16 \times 0.34 \text{ mm}^3$. 3297 measured reflections (1.0 $< \theta < 27^\circ$, -h, h, -k, k, -l, l), 2820 unique (merging R = 0.012), 2531 with the $I > 3\sigma(I)$ in refinement (163 variables, observ./variab. = 15.5, weighting coefficients 5.6, -2.5, 4.6), maximum and minimum peaks in the final difference map 0.40 and -0.36 eÅ^{-3} , R = 0.019, $R_w = 0.023$.

Data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer (ω -2 θ mode with the ω scan width = 0.77-0.79+0.34 tan θ , ω scan speed 1.4-10.1° min⁻¹, the ratio of the scanning rates $\omega/\theta = 1.2$, graphite-monochromated MoK α radiation, $\lambda = 0.71069$ Å).

For both structures corrections for Lorentz and polarization effects as well as empirical correction for absorption [14] based on azimuthal scan data were applied. The structures of 2 and 10 were solved by direct methods and refined by full-matrix leastsquares technique with all non-hydrogen atoms in anisotropic approximation. In 10 all hydrogen atoms were located in the difference Fourier maps, in 2 all H-atoms were placed geometrically. For both structures, hydrogen atoms were included in the refinement with the fixed positional and thermal parameters. Chebyshev weighting scheme was applied [15]. Anomalous dispersion contributions were included in the calculated structure factors. An empirical absorption correction using the DIFABS [16] program was applied after isotropic convergence. Crystallographic calculations were carried out using the CRYSTALS [17] program package on Micro VAX 3800 computer. Neutral atom scattering factors were taken from the usual sources [18]. Additional material available from Cambridge Crystallographic Data Centre comprises atom coordinates, thermal parameters and remaining bond lengths and angles.

- [12] J.C. Green, S.E. Jackson, B. Higginson, J. Chem. Soc. Dalton Trans., (1975) 403.
- [13] J.W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
- [14] A.C.T. North, D.C. Philips and F.S. Mathews, *Acta Crystallogr.,* Sect. A, 24 (1968) 351.
- [15] D.J. Watkin and J.R. Carruthers, Acta Crystallogr., Sect. A, 35 (1979) 698.
- [16] N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
- [17] D.J. Watkin, J.R. Carruthers and P.W. Betteridge, *CRYSTALS user guide*, Chemical Crystallography Laboratory, University of Oxford, 1985.
- [18] International Tables for Crystallography, Vol. 4, Kynoch, Birmingham, 1974.
- [19] K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton and G.V. Rees, Acta Crystallogr., Sect. B, 30 (1974) 2290.
- [20] A.J. Schultz, K.L. Stearley, J.M. Williams, R. Mink and G.D. Stucky, Inorg. Chem., 16 (1977) 3303.
- [21] This work.
- [22] L. Labella, A. Chernega, M.L.H. Green, unpublished results.